In Vivo Neurophysiology

We study how individual cortical neurons encode sensory stimuli and how sensory representation is affected by behavior. The rodent barrel cortex is an excellent system to study these questions since the individual sensory organs (facial whiskers) are represented by easily identifiable cortical columns. Additionally, our group is part of an international effort to understand human brain function at (sub)cellular resolution.

Research

Sensory processing during behavioral paradigms

During animal behavior, there is a constant interplay between brain areas involved in sensory processing, decision making and motor output. The whisker system is an obvious example of a sensorimotor system where motor output (movement of the sensory organs (i.e. the whiskers)) has to be integrated with incoming sensory information. In turn, the sensorimotor information guides cognitive behaviour. Our research question focusses on the organisational principles of the cortical microcircuit across distinct areas of the sensorimotor system. Techniques used are behavioral training, (in vivo) electrophysiology in awake, behaving animals and post-hoc 3D Neurolucida reconstructions.

Sensory processing in prefrontal cortex

Sensory information can induce shifts in attention and guide decision making and this cognitive behavior critically depends on prefrontal cortex. In this project we study how cognitive behaviour is represented in the prefrontal cortical microcircuit. Techniques used are behavioural training (sensory based decision making), (in vivo) single- and multi-unit electrophysiology in behaving animals and post-hoc 3D Neurolucida reconstructions.

3D reconstruction of labeled neurons

Computer models can be helpful tools to design and direct future experiments and predict possible outcomes. Using 3D reconstructions from in vivo recordings, the first goal is to anatomically reconstruct the cortical column. Then, physiological data will be used to model (and playback) the electrical activity of the cortical column. This project is a collaboration with Marcel Oberlaender and Bert Sakmann from the Max-Planck Institute of Neurobiology, Germany. Techniques used are 3D Neurolucida reconstructions and computer modeling of morphological and physiological properties.

Structure-function relationship of individual neurons in human cortex

Extremely little is known about the morphological and physiological properties of adult human neurons. Together with the labs of Huibert Mansvelder, Idan Segev and Henry Markram, our lab is investigating the relationship between structure and function of individual neurons across all layers in adult human cortex, obtained during resection surgery in the VU medical center (Amsterdam, the Netherlands).

We developed a novel pipeline to handle living brain tissue and preserve resected human brain material for the study of fundamental neurophysiological properties such as passive and active membrane properties, synaptic transmission, spike-timing-dependent (associative) plasticity and action potential back propagation.


Publications

Deitcher Y., Eyal G., Kanari L., Verhoog M.B., Kahou G.A.A., Mansvelder H.D., de Kock C.P.J.*, and Segev I.* Comprehensive morpho-electrotonic analysis shows two distinct classes of L2 and L3 pyramidal neurons in human temporal cortex. Cereb Ctx 2017, in press.

Krieger P., de Kock C.P.J., Frick A., Calcium dynamics in basal dendrites of layer 5A and 5B pyramidal neurons is tuned to the cell-type specific physiological action potential discharge. Front Cell Neurosci 2017 Jul 11;11:194. doi: 10.3389/fncel.2017.00194. eCollection 2017.

Mohan H., de Haan R., Mansvelder H.D., de Kock C.P.J., The Posterior Parietal Cortex as Integrative Hub for Whisker Sensorimotor Information. Neurosci., 2017 Jun 19. pii: S0306-4522(17)30418-9. doi: 10.1016/j.neuroscience.2017.06.020. [Epub ahead of print] Review.

Eyal G., Verhoog M.B., Testa-Silva G, Deitcher Y, Lodder J.C., Benavides-Piccione R., Morales J., DeFelipe J., de Kock C.P.J., Mansvelder H.D., Segev I., Unique membrane properties and enhanced signal processing in human neocortical neurons. Elife. 2016 Oct 6;5. pii: e16553. doi: 10.7554/eLife.16553.

Luchicchi A., Mnie-Filali O.*, Terra H.*, Bruinsma B.*, de Kloet S.*, Obermayer J., Heistek T., de Haan R., de Kock C.P.J., Deisseroth K., Pattij T.*, Mansvelder H.D.*, Sustained attentional states require distinct temporal involvement of the dorsal and ventral medial prefrontal cortex. Front Neural Circuits. 2016 Aug 31;10:70. doi: 10.3389/fncir.2016.00070. eCollection 2016.

Verhoog M.B., Obermayer J.*, Kortleven C.A.*, Wilbers R., Wester J., Baaijen J.C., de Kock C.P.J., Meredith R.M., Mansvelder H.D., Layer-Specific Cholinergic Control of Human and Mouse Cortical Synaptic Plasticity. Nat Commun. 2016 Sep 8;7:12826. doi: 10.1038/ncomms12826.

Team Leader
Christiaan de Kock